
TITAN: Task-oriented Prompt Improvement with Script
Generation
Chung-Yu Wang∗

Alireza DaghighFarsoodeh
Hung Viet Pham

{cywang14,aliredaq,hvpham}@yorku.ca
York University, Canada

Abstract
Large language Models (LLMs) have demonstrated remarkable abil-
ities across various tasks, leveraging advanced reasoning. Yet, they
struggle with task-oriented prompts due to a lack of specific prior
knowledge of the task answers. The current state-of-the-art ap-
proach, PAL, utilizes code generation to address this issue. However,
PAL depends on manually crafted prompt templates and examples
while still producing inaccurate results.

In this work, we present TITAN—a novel strategy designed to
enhance LLMs’ performance on task-oriented prompts. TITAN
achieves this by generating scripts using a universal approach and
zero-shot learning. Unlike existing methods, TITAN eliminates
the need for detailed task-specific instructions and extensive man-
ual efforts. TITAN enhances LLMs’ performance on various tasks
by utilizing their analytical and code-generation capabilities in a
streamlined process. TITAN employs two key techniques: (1) step-
back prompting to extract the task’s input specifications and (2)
chain-of-thought prompting to identify required procedural steps.
This information is used to improve the LLMs’ code-generation
process. TITAN further refines the generated script through post-
processing and the script is executed to retrieve the final answer.

Our comprehensive evaluation demonstrates TITAN’s effective-
ness in a diverse set of tasks. On average, TITAN outperforms the
state-of-the-art zero-shot approach by 7.6% and 3.9% when paired
with GPT-3.5 and GPT-4. Overall, without human annotation, TI-
TAN achieves state-of-the-art performance in 8 out of 11 cases while
only marginally losing to few-shot approaches (which needed hu-
man intervention) on three occasions by small margins. This work
represents a significant advancement in addressing task-oriented
prompts, offering a novel solution for effectively utilizing LLMs in
everyday life tasks.

CCS Concepts
• Computing methodologies → Machine learning; Semantic
networks; • Applied computing;

Keywords
Prompt Engineering, Code Generation, Large Language Models

1 Introduction
Large Language Models (LLMs) like GPT have significantly ad-
vanced the field of Natural Language Processing (NLP) through

∗The work was done when Chung-Yu Wang was at York University

their proficiency in a wide range of tasks, including text genera-
tion [1, 30], translation [16, 42], summarization [19], and answer-
ing questions [21, 25]. These models are trained on vast datasets,
enabling them to produce text that is both coherent and contextu-
ally appropriate [47]. However, when it comes to handling basic,
task-oriented problems that involve numerical calculations or step
executions, LLMs often fall short [24, 52]. This is an inherent weak-
ness due to the way LLMs are designed and constructed. LLMs are
trained on large text corpora and finely tuned for linguistic content
creation and processing [3]. LLMs construct answers from text cor-
pora and often face difficulties when the answers are not present
directly in the training dataset but require precise numerical op-
erations or step executions [15]. For instance, LLMs’ limitation in
counting tasks is evident in a simple test. If GPT-4 [2] using greedy
decoding (0.0 temperature), is asked: “Ed had 22 more marbles than
Doug. Doug lost 8 of his marbles at the playground. How many
more marbles did Ed have than Doug then?”, the answer would be:
“Ed still had 22 more marbles than Doug”. LLMs have a tendency to
provide approximations or incorrect counts. This highlights the ne-
cessity for specialized prompt improvement to address these kinds
of task-oriented challenges.

One approach is to utilize prompt engineering [27, 32, 50, 57,
60] to improve LLMs’ performance on specific tasks. This process
involves crafting well-defined, strategically structured prompts
to guide models towards specific outcomes. For instance, Chain-
of-Thought (CoT) [45], one of the prompting techniques, breaks
down problems into intermediate, textual steps to facilitate problem
understanding and reveal steps toward potential solutions. CoT
could be applied to the above problems to help LLM derive steps to
complete the task. However, CoT still struggles with task-oriented
problems as it still inherits the LLMs’ weakness of not having direct
access to the numerical answers [15]. To address this, prior work
proposes Program-Aided Language Models (PAL)[13]. PAL employs
the generation of code as an intermediate step in the reasoning
process to bridge the task execution gap.

Nevertheless, these prompt techniques perform optimally when
used with few-shot prompting, in which hand-picked problem ex-
amples and answers are provided to help LLMs correctly compre-
hend and solve problems. However, crafting these examples for
few-shot prompting is non-trivial and is an extra burden for the
users without any related experience [10, 28, 35]. Using wrong
examples [37] or wrongly ordering examples [31] for few-shot
prompting will affect performance dramatically. To address the
drawbacks of crafting few-shot prompts for task-oriented problems,
we introduce TITAN, a novel prompting framework to address the
challenges of task-oriented problems while requiring no user effort.

Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada Chung-Yu Wang, Alireza DaghighFarsoodeh, and Hung Viet Pham

Distinct from PAL, which directly generates scripts, TITAN in-
corporates two additional intermediate reasoning stages: input
extraction and step extraction. These additional reasoning stages
facilitate the generation of accurate scripts without the need for
labeled examples. Specifically, TITAN applies step-back prompt-
ing [57] to extract the inputs and their specifications for each task,
making it the first framework to incorporate step-back prompting
into code generation tasks. Input extraction helps LLMs overcome
their tendency to perform poorly when given meaningless vari-
ables or when there is a misunderstanding of the problem’s inputs.
In parallel, TITAN extracts procedure steps to complete the task
by utilizing CoT prompting, which has been shown to aid LLMs
in accurately comprehending problems by breaking them down
into steps [22, 45]. Finally, TITAN combines the information from
these two additional reasoning stages to generate the most accurate
scripts that are capable of producing precise answers.

To assess the effectiveness of TITAN, we evaluate it across seven
distinct prior datasets [9, 13, 23, 33, 34, 39] containing mathemati-
cal and symbolic reasoning tasks and four additional task-oriented
benchmarks we constructed in this work. The results demonstrate
that TITAN, when paired with GPT-4, consistently outperforms
PAL zero-shot variant by an average accuracy improvement of 3.9%.
When compared to few-shot approaches, TITAN performs better or
comparable inmost cases (8 out of 11 datasets). Furthermore, TITAN
remains effective even with less advanced LLMs, such as GPT-3.5.
TITAN improves state-of-the-art zero-shot approaches on GPT-3.5
by an average of 7.6%. Overall, when using GPT-4, TITAN achieves
state-of-the-art performance on 8 out of 11 evaluated datasets while
only marginally losing to few-shot approaches (which needed hu-
man intervention) on three datasets by small margins. Our ablation
study further indicates that the addition of input and step extraction
stages enables TITAN to tackle task-oriented problems accurately
without the need for hand-crafted examples and prompt templates.

This work’s main contributions are as follows:
• A new TITAN framework that can improve LLMs’ ability to
solve task-oriented problems in a zero-shot manner by extracting
inputs and procedure steps using step-back and chain-of-thought
prompting respectively.

• Four task-oriented datasets consist of Finding, Counting, True/-
False, and Generative problems that can be used to better assess
the capacity of LLMs in addressing task-oriented challenges.

• An extensive evaluation of TITAN on eleven datasets employing
two different popular versions of LLMs (GPT-3.5 Turbo and GPT-
4).

2 Approach
In this work, we introduce TITAN, a novel approach to improve
LLMs responses to task-oriented prompts. This is achieved by gener-
ating code through the use of a universal prompt template coupled
with zero-shot learning techniques. TITAN significantly differs
from prior prompt-specific strategies [6, 7, 13, 29, 53, 55, 59] since
it provides a general and effective way to boost the performance
of LLMs in performing various tasks without the need for individ-
ual prompt adjustments. TITAN enhances LLMs in two key ways:
firstly, by utilizing the inherent abilities of LLMs to dissect and

Prompt:
Ed had 22 more marbles than Doug.
Doug lost 8 of his marbles at the
playground. How many more marbles
did Ed have than Doug then?

... Take a step back and extract all the inputs
mentioned in the client's query ...

Inputs Extraction Prompt

... You do not need to solve the
question. You only should guide us step by
step on how to solve this problem ...

Goal and Steps Extraction Prompt

1. Initial Difference in Marbles:
The first input mentioned is that Ed had 22 more marbles than Doug ...
- Ed's marbles = Doug's marbles + 22
2. Doug's Loss:
The second input is about Doug losing 8 of his marbles at the playground ...
- Doug's new marble count = Doug's original marble count - 8

Inputs

1. Understand the Initial Situation:
... We are told that Ed had 22 more marbles than Doug ...
2. Identify the Change:
... In this case, Doug lost 8 of his marbles.
3. Assess the Impact of the Change:
... it only changes how many more marbles Ed has compared to Doug ...
4. Calculate the New Difference:
... calculate how the loss of 8 marbles by Doug affects the difference between
the number of marbles Ed and Doug have ...

Goal and Steps

Goal, Steps, and Input Extraction Phase

LLM

LLM

Generate a general runnable Python
function to solve the following question
for general purpose: "{Question}"...

... This is an example to show you how to
think about it and how to break it into
smaller steps: "{Goal and Steps}"...

... For the inputs, use "{Inputs}"...

Code Generation Prompt
 ```python
def solution():
    # Initial difference between Ed and Doug's marbles
    initial_difference = 22
    # Marbles Doug lost
    doug_lost = 8
    # Calculate the new difference after Doug loses some marbles
    # Since Doug lost marbles, the difference increases by the same amount
    new_difference = initial_difference + doug_lost
```

Generated Script

LLM

Code Generation Phase

def solution():
 # Initial difference between Ed and Doug's marbles
 initial_difference = 22
 # Marbles Doug lost
 doug_lost = 8
 # Calculate the new difference after Doug loses some marbles
 # Since Doug lost marbles, the difference increases by the
 same amount
 new_difference = initial_difference + doug_lost

Final Script

Post-processing Code execution Answer: 30

Post-processing and Code Execution

Figure 1: TITAN Overview

analyze complex queries; and secondly, by employing the code gen-
eration ability of LLMs to create executable scripts that produce
the answers.

2.1 Challenges
As discussed in the Introduction, task-oriented prompts that involve
numerical numbers (e.g., Ed had 22 more marbles than Doug. Doug
lost 8 of his marbles at the playground. How many more marbles
did Ed have than Doug then?) are not a direct fit for LLMs [15].
LLMs excel at analyzing and understanding complex queries by
learning prior knowledge from a large corpus of text data [4, 44].
However, for LLMs to correctly respond to a query, the answer
must be composed of such prior knowledge [14]. In the case of task-
oriented prompts, the answer often is the result of an execution of
some procedure described by the prompt. Hence in most cases, the
result does not directly exist in the prior knowledge.

Conversely, LLMs have shown proficiency in generating code
from natural language descriptions [11, 26, 38, 40, 51], as their train-
ing datasets contain numerous coding instances that the LLMs can
utilize. By combining the analysis ability of LLMs with the task exe-
cution function of computer programs, we can create a system that
is capable of precisely performing complex task-oriented prompts.

Prior approaches improve task-oriented prompts with code gen-
eration by relying heavily on task-specific prompts, requiring ex-
tensive manual effort and domain expertise. Such approaches [7,
13, 53, 55] employ uniquely crafted prompt templates tailored to
individual tasks, along with few-shot learning techniques, to create
scripts that can produce the desired response. Thus, for a specific
task, the user would need to design a prompt template and provide
some learning examples to get the most accurate responses from
LLMs.

Figure 1 shows an example of a step-by-step execution of TITAN.
Specifically, given the input prompt “Ed had 22 more marbles than
Doug. Doug lost 8 of his marbles at the playground. How many
more marbles did Ed have than Doug then?”, which asks TITAN to
perform a subtraction task of “Marbles Ed had” and “Marbles Doug
had after he lost some of them at the playground”. TITAN performs
step-back analysis to extract the specification of the inputs (i.e., the

TITAN: Task-oriented Prompt Improvement with Script Generation Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada

initial difference in marbles and the amount that Doug had after
the accident). At the same time, TITAN performs chain-of-thought
(CoT) analysis to extract the procedure (i.e., Understanding the
situation and the changes after the accident) as well as the expected
output (i.e., calculating the new difference). By combining these
two pieces of information, TITAN was able to generate the solution
script that correctly outputs the expected result.

2.2 Script generation with step-back and
zero-shot chain-of-thought prompting

To reduce the reliance on human effort in utilizing LLMs for task-
oriented prompts, TITAN leverages two recently proposed prompt
engineering techniques: step-back prompting [57] and zero-shot
chain-of-thought prompting [22]. Step-back prompting helps TI-
TAN analyze the query to identify the relevant inputs and their
requirements. Additionally, zero-shot chain-of-thought prompting
analyzes the query to extract the relevant steps and procedures to
perform the task while requiring no additional input from the user.
By integrating these two processes, TITAN could produce a script
that faithfully represents the original task, which in turn yields a
precise response.
Extracting inputs and specification phase: TITAN employs step-
back prompting to identify the input requirements from the initial
prompt. This process involves querying the LLM to identify and
outline the specific inputs needed for each task. By taking a step
back, TITAN enables the model to focus on the essential inputs
required for successful code execution in the later stage.

Step-back prompting consists of two stages: abstraction and
reasoning. Instead of asking the question directly, the abstraction
stage asks the LLM a step-back question about a related higher-level
concept or principle [57]. In the reasoning stage, the LLM is asked
to reason about the high-level concept or principle facts found after
the step-back question. In this work, TITAN utilizes the abstraction
stage to extract inputs and their specifications from the original
prompt. It then performs the reasoning stage when generating code
based on the extracted inputs.

As demonstrated in Figure 1, TITAN performs the abstraction
stage by asking a step-back question “... Take a step back and extract
all the inputs mentioned in the client’s query ...” to extract the inputs
from the original prompt. Specifically, by directing the LLM to focus
on a higher concept (i.e., inputs and their specifications) without
directly addressing the original prompt, TITAN can extract accurate
inputs that help the LLM in the later code generation phase. In this
example, TITAN extracts the two inputs (i.e., “22” and “8”) and
their specifications (i.e., “initial difference in marbles” and “Doug’s
loss”). These are then integrated into the generated code later as
initial_difference = 22 and doug_lost = 8.
Extracting the goal and procedure steps phase: To improve the
precision of the code generation step, TITAN applies zero-shot
chain-of-thought prompting to delve deeper into the goal of the
task and the logical steps needed to achieve it while requiring
no additional examples. TITAN prompts the LLM to articulate a
step-by-step reasoning process, effectively mapping out the path-
way from problem statement to solution. As shown in Figure 1,
TITAN uses the prompt “... should guide us step by step on how
to solve this problem ...” to extract the procedure steps needed to

address the original prompt. By encouraging the LLM to express
explicitly the thought process, TITAN can extract a detailed goal
and the methodological procedure required to complete the task.
This process clarifies the objective to ensure the generated code
aligns closely with the intended outcome. By utilizing the zero-shot
variant of chain-of-thought, TITAN eliminates the need for addi-
tional examples that prior work such as PAL requires to perform
optimally.

Figure 1 shows that by instructing the LLM to outline steps to-
ward a goal without directly seeking the final answer, TITAN can
clarify the main objective “Calculate the New Difference”. Addi-
tionally, chain-of-thought prompting helps TITAN uncover logical
thinking to solve the problem “It only changes how many more
marbles Ed has compared to Doug”. This phase guides the LLM
to better understand the final goal and process during the code
generation phase. This is demonstrated in the final generated code
new_difference = initial_difference + doug_lost which
matches the extracted steps.

Code generation phase: Combining the information extracted
in the two previous phases, TITAN prompts the LLM to generate
code based on clearly defined inputs, the articulated goal, and well-
reasoned steps. This code generation phase combines the inputs of
step-back prompting and the steps from chain-of-though prompting
to synthesize a coherent and functional code output. Specifically,
TITAN employs the prompt “Generate a general Python function
to solve the following question for general purpose: {question}” to
ask LLMs to generate a Python function for the question. Followed
up by the prompts “This is an example to show you how to think
about it and how to break it into smaller steps: “{The Output from
Goal and Steps Extraction}”” and “ For the inputs, use “{The Output
from Inputs Extraction}”” to aggregate the outputs from previous
phase into code generation phase. In this way, TITAN is able to
guide the LLM to produce code that is logically aligned with the
task’s objectives. For example, TITAN obtained the generated script
(in Figure 1) given the original prompt “Ed had 22 more marbles
than Doug. Doug lost 8 of his marbles at the playground. How
many more marbles did Ed have than Doug then?” This example
demonstrates the effectiveness of step-back and chain-of-thought
prompting in helping LLM generate code with the correct inputs
initial_difference = 22 and doug_lost = 8, and precise rep-
resentation of the task new_difference = initial_difference
+ doug_lost.

Post-processing and code execution: Since LLMs return free-form
responses, TITAN employ a rigorous extraction and validation pro-
cess. Specifically, TITAN utilizes regular expressions to extract the
generated code from the responses. The regular expressions target
consistent formatting markers (i.e., “‘Python”’ for code generated
by LLMs to ensure consistent extraction accuracy. Once the code is
extracted, additional post-processing is required such as importing
required packages and fixing indentation errors. The code is then
executed automatically and the output is extracted as the final re-
sponse to the user prompt. To get the result, we first set up rules
to identify math questions from the code’s output. If the output
matches these rules, we take and return this part. If not, we just
clean up the output and use that as the final answer. This makes
sure we always have a neat and relevant result. For example, The

Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada Chung-Yu Wang, Alireza DaghighFarsoodeh, and Hung Viet Pham

Table 1: Datasets overview

Dataset N Input Output

GSM8K [9] 1319 Question Number
GSMHard [13] 1319 Question Number
SVAMP [34] 1000 Question Number
ASDIV [33] 2096 Question Number
AddSub [23] 395 Question Number
MultiArith [23] 600 Question Number
Penguins [39] 149 Table + Text + Question Number + Text

Finding 660 Question Text
Counting 1100 Question Number
True/False 500 Question Binary
Generative 1100 Question Text + List

Final Script in Figure 1 is the final generated code that is executed
and the output is extracted as 30 (i.e., the value of the variable
new_difference).

3 Experimental Setup
3.1 Task-oriented datasets
Drawing from the prior study [15], when faced with a more chal-
lenging question on prime numbers that were sufficiently common
to have representation on the Internet, the system performed ade-
quately at that time. Hence, we create four task-oriented datasets
from scratch to thoroughly evaluate TITAN performance. These
include simple task-oriented prompts which we found to be par-
ticularly difficult for LLMs to directly address. This new dataset
will benefit future research, given the current trend in prompt con-
struction towards decomposition techniques, such as Least-to-Most
Prompting [60] and Decomposed Prompting [20]. Our dataset in-
cludes decomposition tasks such as finding, counting, true/false
questions, and generative tasks.

Table 1 shows the summary of these datasets. Each dataset in-
cludes multiple task templates that can be used to generate the
prompts and the expected responses. Table 2 shows the complete
template sets for the task-oriented datasets.
Finding Dataset: Given that LLMs have been shown to be strong
in natural language tasks, it was a surprise to see LLMs (including
GPT-4), perform poorly on simple Finding tasks where the prompt
asks the models to identify specific patterns and letters within
some given text. This Finding dataset includes 1100 queries that
ask for a pattern or a word as a response, we demonstrate prompt
templates for generating the Finding dataset in Table 2. These types
of templates evaluate LLMs’ capacity to discern patterns amidst
varying textual contexts.
Counting Dataset: Counting tasks is not a natural fit for LLMs. As
demonstrated in the Introduction, GPT models can make mistakes
when performing counting tasks. In this dataset, we include 1100
queries that require numerical responses. We form the dataset with
various prompt templates stated in Table 2. This dataset is designed
to test LLMs’ ability to handle counting-related challenges such as
enumerating numbers, unique letters, and words.
True/False Dataset: True/False dataset includes tasks requiring
LLMs to discern the veracity of statements related to natural lan-
guage processing. The dataset includes queries that describe the
natural language processing tasks on sentences or words. The mod-
els are required to respond with a binary digit. The dataset consists
of 500 samples with auto-generated answers from five prompt tem-
plates listed in Table 2. These templates encompass five distinct

tasks, focusing on identifying aspects such as spacing, capitaliza-
tion, repetition of words, and spelling differences within natural
language sentences or words. Utilizing binary responses reduces
the complexity of response composition and focuses the evaluation
on the models’ ability to analyze and perform natural language
tasks.

Generative Dataset: Performing generative tasks is generally con-
sidered a strong point for LLMs which are generative in nature.
LLMs are known to generate surprisingly well-structured responses
for various creative prompts. However, procedural generative tasks
that require strict procedure steps to complete are different from
the typical free-form creative tasks that LLMs are known for. For
example, in a procedural generative task, the LLM could be tasked
with creating a word from the first letter of each word in a sen-
tence. We construct a generative dataset that aims to assess the
capability of models to produce novel responses by following a
given procedure and inputs. This dataset comprises 1100 queries,
formatted as prompts which ask the models to generate a new word
as a response in various ways. There are five distinct categories of
prompts listed in Table 2 that challenge various aspects of textual
manipulation, including word swapping, capitalization adjustments,
and modifications to the letters at the end of words. This dataset
seeks to thoroughly explore the LLM’s generative potential and its
ability to understand and manipulate language constructs in novel
ways.

3.2 Mathematical and symbolic reasoning
datasets

Following prior work [13, 55], we evaluate TITAN on mathematical
and symbolic reasoning datasets such as GSM8K, GSMHard [9],
SVAMP [34], MAWPS [23], PENGUINS [13, 39], and ASDIv[33].

GSM8KandGSMHard are expansive collections of high-quality,
linguistically varied grade school mathematics word problems,
meticulously curated by adept problem composers. Each problem
within the dataset necessitates a solution process that spans be-
tween two to eight steps, predominantly involving a series of fun-
damental arithmetic operations (i.e., addition, subtraction, multipli-
cation, and division) to deduce the conclusive answer.

SVAMP (i.e., Simple Variations on Arithmetic Math Word Prob-
lems) dataset presents itself as a challenge set specifically designed
for elementary-level Math Word Problems (MWP). An MWP is
defined by a concise narrative in Natural Language, delineating a
scenario or state of the world, which culminates in posing a query
regarding one or more unknown quantities.

MAWPS is an online compendium dedicated to Math Word
Problems (MWP) and serves as a comprehensive dataset for the
evaluation of diverse algorithms.

PENGUINS delineates a task framework that integrates a tabular
dataset of penguins, augmented with supplementary descriptors
in natural language. The primary objective within this framework
is to deduce answers to queries concerning the attributes of the
penguins based on the provided dataset and descriptions.

ASDIv corpus (i.e., Academia Sinica Diverse MWP Dataset) is
another MWP dataset which consists diverse language patterns
and problem types, constituting an English MWP collection. This

TITAN: Task-oriented Prompt Improvement with Script Generation Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada

Table 2: The templates to create the four task-oriented datasets

Dataset Prompt Template Response

Finding

Choose the word from the three options provided that does not have “{word}“ within it. The single word given is: “[’{word}’,
’{word}’, ’{word}’]”.

Word
Taking into account that “{letter}” is identical to “{letter}“, seek out the word among these three that has the most unique letter
count. The words are “[’{word}’, ’{word}’, ’{word}’]”.

Assuming “{word}” has precisely one “{word}”, identify from the list below the word(s) that also contain exactly one “{word}”.
The list includes: “[’{word}’, ’{word}’, ’{word}’]”.

Among the three words listed, select the one that initiates with “{letter}”. The words for consideration are “{words}”.

Counting

Excluding words that have fewer than four letters, how many words, spaced apart by ’space’, exist in this sentence? The input is:
{sentence}.

Number
How many numeric characters are found in “{word}”?

What is the count of “{letter}” in “{word}” when ignoring uppercase letters?

What is the total number of distinct letters in “{word}”, disregarding case?

How many vowels can be found in the “{word}”

True/False

If there is a space in “{word}”, is there any space in “{word}”? If there is a space return “1”, otherwise return “0”.

0 / 1

Is there a capitalization difference between “{word}” and “{word}”? If there is a difference return “1”, otherwise return “0”.

Does this sentence has more than 3 spaces? “{sentence}” If there are more than 3 spaces return “1”, otherwise return “0”.

Is there any repeated word in the following sentence? “{sentence}” If there are repeated words return “1”, otherwise return “0”.

If we assume the letter “{letter}” is equal to the letter “{letter}”, is there any spelling difference between “{word}” and “{word}”?
If there is a difference return “1”, otherwise return “0”.

Generative

Take the first letter of each word within the specified sentence, join these letters to construct and return a new word. Words are
spaced apart. The input is: “{sentence}”

Word
Switch the initial two letters of the word provided and return the word thus generated. The input is: “{word}”

Replace the final letter of the given word with an ’s’ and return the newly formed word. The input is: “{word}”

Capitalize the first character of the given word and return the word with the adjustment. The input is: “{word}”

Replace the first letters of the words with each other and return the adjusted versions as the response. The words are: “[’{word}’,
’{word}’, ’{word}’, ...]” List

corpus is designed for the assessment of the proficiency of various
MWP solvers.

3.3 Baselines
PAL [13] is the state-of-the-art approach that focuses on task-
oriented prompts. PAL employs a code interpreter for problem
reasoning with few-shot prompting while TITAN utilizes zero-shot
learning. To gain a deeper understanding of how our approach
compares to the state-of-the-art we also include PAL’s zero-shot
prompting technique (PAL ZS) as our second baseline. PAL ZS
utilizes the same prompt template as PAL but without the use of
examples.

Recently, a few variants of PAL have been proposed such as
Model Selection [55] and X-of-Thoughts [29]. Distinct from TITAN,
which employs a two-step intermediate process for script creation,
the Model Selection approach alternates between using CoT or PAL
based on which yields more accurate outcomes as determined by
language model evaluations. Meanwhile, X-of-Thought adopts the
framework consisting of planning and verification phases, selecting
the optimal method from among CoT, Program-of-Thought (PoT),
and Equation-of-Thought (EoT) for problem-solving. Since these

variants are also using code generation, we adopt their result as
our baseline.

Our comparison does not include another variant, Code-based
Self-Verification (CSV) [59], due to its dependence on the GPT-4
Code Interpreter and its evaluation solely on the MATH dataset.
The dataset does not align with the types of problems TITAN aims
to address.

Follow prior work, we also adopt the most recent GPT-4 model
(i.e., gpt-4-0125-preview) and a less powerful GPT-3.5 model (i.e.,
gpt-3.5-turbo-0125) as our backend language model.

3.4 Experiment Details
We replicate PAL’s result by executing PAL code from their GitHub
using the same version of GPT-3.5 and GPT-4 as stated in the origi-
nal paper. To run PAL on our task-oriented datasets, we form the
PAL few-shot prompt with four examples by randomly selecting
one example from each task-oriented dataset, otherwise, we keep
all PAL’s templates the same.

The zero-shot version of PAL uses the same templates but with-
out any examples. Since PAL didn’t provide a zero-shot prompt,
we developed the zero-shot version of PAL inspired by another
related study, PoT [7]. We adopt their prompt format by first posing

Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada Chung-Yu Wang, Alireza DaghighFarsoodeh, and Hung Viet Pham

Table 3: Comparison of TITAN accuracy (%) to PAL Zero-shot,
evaluated across eleven benchmarks using two GPT models.
The best accuracy scores for each dataset and model are bold.

LLM GPT-3.5 GPT-4

Approach PAL ZS TITAN PAL ZS TITAN

Metric 𝐴𝑐𝑐 𝐴𝑐𝑐 Δ 𝐴𝑐𝑐 𝐴𝑐𝑐 Δ

GSM8K 76.6 84.2 ↑7.6 93.6 95.3 ↑1.7
GSMHard 61.8 69.6 ↑7.8 74.1 78.2 ↑4.1
ASDIV 85.3 91.4 ↑6.1 92.7 97.2 ↑4.5
SVAMP 82.8 84.3 ↑1.5 94.0 94.8 ↑0.8
AddSub 93.1 89.8 ↓3.3 95.7 97.7 ↑2.0
Multiarith 97.3 96.8 ↓0.5 96.8 98.7 ↑1.9
Penguin 59.1 94.3 ↑35.2 87.2 97.5 ↑10.3
Finding 93.8 98.4 ↑4.6 95.5 99.8 ↑4.3
Counting 89.1 87.8 ↓1.3 87.5 89.8 ↑2.3
True/False 59.2 76.7 ↑17.5 84.4 93.8 ↑9.4
Generative 84.9 94.1 ↑9.2 98.7 99.9 ↑1.2
Average 80.3 87.9 ↑7.6 90.9 94.8 ↑3.9

the problem, followed by a request for the LLMs to complete a
Python function named “solution()” without adding any examples.
The function name and the return type are the same as the PAL
few-shot version. For a fair comparison, we utilize the same metric
used by PAL, which adopts exact match scores for evaluation. Un-
less specified differently, all experiments by default employ greedy
decoding, adjusting the temperature of the language models to 0.0.

4 Result and Discussion
In this section, we compare TITAN against state-of-the-art code
generation with zero-shot (RQ1) or few-shot (RQ2). In RQ3, we
evaluate if self-consistency could help improve TITAN at a signifi-
cant cost. Finally, we perform an ablation study (RQ4) to evaluate
the contribution of each component in TITAN (i.e., input extraction
and step extraction).

4.1 RQ1: How does TITAN compare to the
state-of-the-art zero-shot prompting
approaches with code generation?

Similar to prior work, TITAN employs script generation to solve
mathematical and task-oriented problems. Hence, we first assess
the effectiveness of TITAN when comparing state-of-the-art ap-
proaches with code generation in the zero-shot scenario. Existing
code generation methods such as PAL, Model Selection (MS), and
X-of-Thought (XoT), all utilize few-shot prompting. To evaluate
how TITAN is compared to the prior work in the zero-shot scenario,
we create a baseline PAL ZS (PAL zero-shot version) by incorporat-
ing a zero-shot prompts template [7] into PAL to be our zero-shot
baseline.

Table 3 compares TITAN’s accuracy to other state-of-the-art
zero-shot approaches (Row Approach) with code generation across
11 datasets (Columns Acc). The table is divided into two sections
each corresponding to a version of GPT (e.g., GPT-3.5 and GPT-4). It
includes the Δ column to show the relative performance differences
between TITAN and PAL ZS. For instance, TITAN paired with GPT-
4 outperforms the state-of-the-art zero-shot approach PAL ZS in all
11 datasets with a margin as big as 10.3% on the Penguin dataset.
When a weaker LLM model such as GPT-3.5 is used, TITAN still

Table 4: Comparison of TITAN accuracy (%) to other Few-
shot code generation approaches, evaluated across eleven
benchmarks using two GPT models. The ∗ symbol indicates
the accuracy is from original papers. The best accuracy scores
for each dataset and model are bold.

LLM GPT-3.5 GPT-4

Approach PAL MS∗ XoT∗ TITAN PAL MS∗ TITAN
Zero-shot ✗ ✗ ✗ ✓ ✗ ✗ ✓

Metric 𝐴𝑐𝑐 𝑇Δ 𝐴𝑐𝑐 𝑇Δ 𝐴𝑐𝑐 𝑇Δ 𝐴𝑐𝑐 𝐴Δ 𝐴𝑐𝑐 𝑇Δ 𝐴𝑐𝑐 𝑇Δ 𝐴𝑐𝑐 𝐴Δ

GSM8K 81.0 ↓3.2 82.6 ↓1.6 83.3 ↓0.9 84.2 ↑0.9 94.8 ↓0.5 95.6 ↑0.3 95.3 ↓0.3
GSMHard 64.1 ↓5.5 - 63.4 ↓6.2 69.6 ↑5.5 70.9 ↓7.3 - 78.2 ↑4.1
ASDIV 86.4 ↓5.0 89.4 ↓2.0 - 91.4 ↑2.0 92.1 ↓5.1 93.5 ↓3.7 97.2 ↑3.7
SVAMP 84.6 ↑0.3 84.3 -0.0 83.6 ↓0.7 84.3 ↓0.3 94.6 ↓0.2 93.7 ↓1.1 94.8 ↑0.2
AddSub 92.7 ↑2.9 90.6 ↑0.8 90.5 ↑0.7 89.8 ↓3.3 97.2 ↓0.5 95.7 ↓2.0 97.7 ↑0.5
Multiarith 98.7 ↑1.9 98.7 ↑1.9 97.3 ↑0.5 96.8 ↓1.9 98.8 ↑0.1 99.0 ↑0.3 98.7 ↓0.3
Penguin 96.6 ↑2.3 - - 94.3 ↓2.3 96.6 ↓0.9 - 97.5 ↑0.9
Finding 97.7 ↓0.7 - - 98.4 ↑0.7 99.8 -0.0 - 99.8 -0.0
Counting 84.6 ↓3.2 - - 87.8 ↑3.2 88.5 ↓1.3 - 89.8 ↑1.3
True/False 76.0 ↓0.7 - - 76.7 ↑0.7 95.6 ↑1.8 - 93.8 ↓1.8
Generative 87.7 ↓6.4 - - 94.1 ↑6.4 99.4 ↓0.5 - 99.9 ↑0.5
Average 86.4 ↓1.5 - - 87.9 ↑1.5 93.5 ↓1.3 - 94.8 ↑1.3

outshines PAL ZS on 8 over 11 datasets with margins as big as
35.2% in the case of the Penguin dataset. The reason weaker LLM
models fall short on some datasets is that the less advanced GPT
model is unable to leverage the additional stages that TITAN offers.
In scenarios involving simple datasets, inundating simpler models
with excessive information can lead to incorrect responses. [8]

The average row specifies the average performance of each ap-
proach across 11 datasets. On average, TITAN achieved state-of-the-
art zero-shot performance with significant margins of 7.6% and 3.9%
when used on GPT-3.5 and GPT-4 respectively. Overall, the weaker
LLM models such as GPT-3.5 benefit more from the additional
stages that TITAN utilizes. In contrast, the stronger models such as
GPT-4 have better reasoning capability build-in and hence benefit
less from step-back and chain-of-thought prompting. This result
highlights TITAN’s ability to significantly boost the performance
of weaker language models.

When looking at the GPT-4 result, TITAN improvement on PAL
ZS is relatively small (around 2%) on simpler datasets with small
numbers and easy questions such as AddSub, Multiarith, and Count-
ing. On the other hand, on more challenging datasets involving
large numbers, tables, and complicated questions such as GSMHard,
True/False, and Penguin datasets, TITAN significantly outperforms
PAL-ZS (by 4.1%, 9.4%, and 10.3% respectively) This suggests that the
TITAN is particularly suitable for complex task-oriented prompts.

Finding 1: TITAN outperforms the state-of-the-art zero-shot
approach by 7.6% and 3.9% when paired with GPT-3.5 and GPT-
4. In some cases, the performance gain can be as big as 35.2%
and 10.3% with GPT-3.5 and GPT-4 respectively.

4.2 RQ2: How does TITAN compare to the
state-of-the-art few-shot prompting
approaches with code generation?

In this RQ, we assess the broader effectiveness of TITAN when
comparing state-of-the-art approaches with code generation that
also utilizes few-shot prompting such as PAL few-shot version,
Model Selection (MS), and X-of-Thought (XoT). The details of each

TITAN: Task-oriented Prompt Improvement with Script Generation Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada

baseline are discussed in Sec 3.3. We replicate PAL on the original
and our task-oriented datasets, we employ the code provided in the
original study.

Table 4 compares TITAN’s accuracy to other state-of-the-art
Few-shot approaches with code generation. The asterisk “*” symbol
indicates approaches that are not possible to replicate (i.e., due to
missing executable source code) and for which the accuracy values
are taken from the original papers. This is why the Table does
not show results for MS and XoT on our proposed task-oriented
datasets which is indicated by the dash (“-”).

In Table 4, for each combination of LLM and dataset, the best
accuracy value is highlighted in bold, indicating state-of-the-art
performance. The 𝐴Δ columns illustrate the improvement that
TITAN makes when compared to all baselines. For example, TITAN
achieves state-of-the-art performance on 8 over 11 datasets when
paired with GPT-4 LLM while only marginally losing to few-shot
approaches (which needed additional non-trivial examples) on three
datasets GSM8K, Multiarith, and True/False (by 0.3%, 0.3% and 1.8%
respectively as indicated by the 𝐴Δ column).

Overall, when paired with the most advanced LLM (i.e., GPT-
4), TITAN provides the most enhancement among all approaches
across most datasets. This can be seen by looking at the𝑇Δ columns
which indicate the difference between each baseline and TITAN.
Only in four cases where PAL and MS (which requires non-trivial
examples) outperform TITAN with marginal gaps (i.e., 0.1%, 0.3%,
0.3%, and 1.8%).

On average, TITANwith GPT-4 achieves an average performance
boost of 1.3% compared to PAL (which unlike TITAN requires few-
shot examples).When evaluated onGPT-3.5, TITAN performs better
on average than alternative few-shot approaches, achieving an
average accuracy enhancement of 1.5% over PAL. These results
indicate that TITAN achieves state-of-the-art performance in most
cases even against few-shot approaches that require non-trivial
examples.

When moving from GPT-3.5 to GPT-4, the average performance
gain TITAN provides over PAL is only 0.2%(between 1.5% and 1.3%)
which is significantly smaller than the 3.7% (between 7.6% and 3.9%)
gain TITAN provides over PAL ZS. This might be because the more
advanced language models (i.g., GPT-4) benefit more from few-shot
prompting and hence are harder to enhance with step-back and
chain-of-thought prompting that TITAN employs. Nonetheless,
TITAN enhances the performance of these models across the board.

Finding 2: Overall, TITAN achieves state-of-the-art perfor-
mance in most (8 out of 11) cases when paired with GPT-4
while only marginally losing to few-shot approaches (which
needed additional non-trivial examples) on three datasets by
small margins. Overall, TITAN outperforms PAL by 1.3%.

To better demonstrate how TITAN was able to effectively gener-
ate correct responses and illustrate TITAN’s limitations we include
two examples where: 1: TITAN is correct while PAL fails and 2:
both PAL and TITAN fail.

Case 1: Figure 2 shows an example from the ASDIV dataset where
TITAN can combine correct reasoning from the input and step ex-
traction phase to generate the correct code. Specifically, TITAN is

initial_difference = 22
doug_lost = 8
Calculate the new difference after Doug loses some marbles
Since Doug lost marbles, the difference increases by the same amount
new_difference = initial_difference + doug_lost

Ed had 22 more marbles than Doug. Doug lost 8
of his marbles at the playground. How many more marbles did
Ed have than Doug then?

Prompt

more_marbles_ed = 22
marbles_lost_doug = 8
Since Ed's marbles are not affected by Doug losing his, the
difference remains the same.
result = more_marbles_ed

22

30

30

Answer

TITAN

PAL Incorrect

Correct

Figure 2: An example prompt where TITAN successes while
PAL fails.

email_invited = 100
friends_per_person = 2
total_email_invited = email_invited * (1 + friends_per_person)
phone_invited = 10
spouses = 8
total_friends_attending = phone_invited + spouses
total_seats_needed = total_email_invited + total_friends_attending

Alex is getting ready to attend an event that she has hosted
and wants to make sure that she has enough seats for everyone. She
invites 100 people via email and each invited person says that they
will also invite 2 of their friends. She then calls 10 of her friends to
invite them too and 8 of them say they will be bringing their spouses.
How many seats will Alex need?

Prompt

people_invited_email = 100
friends_invited_by_email = people_invited_email * 2
friends_invited_by_call = 10
spouses_coming = 8
total_seats_needed = people_invited_email + friends_invited_by_email
+ friends_invited_by_call + spouses_coming
result = total_seats_needed

318

319

Answer

PAL

TITAN

318

Incorrect

Incorrect

Figure 3: An example prompt where both PAL and TITAN
fail.

able to identify the inputs initial_difference and doug_lost as
well as the importance of reasoning: #Since Doug lost marbles,
the difference increases by the same amount which is real-
ized by the important extracted step: new_difference = initial_
difference + doug_lost. This is further illustrated by Figure 1
where the extraction of goals and steps yields the correct logical
steps: “Calculate the New Difference” On the other hand, without
either of these reasoning phases, PAL fails to generate the cor-
rect responses. Specifically, PAL identifies the input name wrong
more_marbles_ed which hinders the integration reasoning into
the solution. This example showcases the distinct differences be-
tween PAL and TITAN and highlights TITAN’s profound grasp of
the problem context due to the reasoning phases.
Case 2: Figure 3 shows an example where both PAL and TITAN fail
to generate the correct answer. Bothmethods correctly reason about
the composition of the answer by counting the email invitations, the
email invitations’ friends, the phone invitations, and their spouses.
However, both fail to account for one additional seat for Alex herself.
This example might expose TITAN’s inherent weakness from the
underlying GPT model (i.e., GPT-4) where the GPT model does not
link the number of seats needed to the number of attendants and
instead links to the number of invitees mentioned in the prompt.
We suspect that this can be due to GPT’s autoregressive mechanism
(i.e., tokens are generated sequentially) that makes each token’s
production reliant heavily on the outcomes generated before it [48].

Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada Chung-Yu Wang, Alireza DaghighFarsoodeh, and Hung Viet Pham

Table 5: TITAN self-consistency integration on GSM8K, Mul-
tiarith, and True/False datasets utilizing GPT-4 withmajority
voting from three samples.

TITAN TITAN + SC@3

GSM8K 95.3 95.6 ↑0.3
Multiarith 98.7 99.5 ↑0.8
True/False 93.8 95.4 ↑1.6

This highlights unique challenges and flaws in the way GPT-4 learns
and encodes these processes [15].

4.3 RQ3: Can self-consistency help improve
TITAN?

Self-consistency [43] is an agnostic strategy that can be applied to
CoT prompting approaches to improve the underlying approach
performance. One downsize of self-consistency is that it requires
many duplicated queries to be sent to the LLM which can have
diminishing returns [18]. Since TITAN incorporates the CoT we
hypothesize that incorporating self-consistency could further im-
prove TITAN’s performance. However, due to the elevated cost,
we do not incorporate self-consistency in TITAN by default and
instead use the temperature of 0.

In this RQ3, we want to test if self-consistency can help improve
TITAN further and if the benefit warrants the cost. Specifically,
we apply self-consistency on TITAN for three datasets (GSM8K,
Multiarith, and True/False) to see if self-consistency can help TITAN
achieve state-of-the-art performance. As indicated by the original
paper [43], we set the LLM’s temperature to a nonzero value to
retrieve distinct response samples. In this case, we set the GPT-4
temperature to 0.7 before running TITAN three times. The final
response is subsequently chosen by majority voting.

In Table 5, TITAN + SC3 (self-consistency with three samples)
indicates the accuracy (%) of TITAN when self-consistency is inte-
grated with three responses. When comparing the vanilla TITAN,
self-consistency helps enhance TITAN by 0.3% on GSM8K, 0.8% on
Multiarith, and 1.6% on True/False at the cost of triple the number
of queries. If the cost of self-consistency is not a factor, TITAN +
SC3 would achieve state-of-the-art performance on GSM8K and
Multiarith while getting within 0.2% of the best approach on True/-
False. Overall, the result suggests the adoption of self-consistency
not only bolsters TITAN’s robustness but also achieves superior
performance relative to greedy decoding (i.e., setting the LLM tem-
perature to 0.0 which is TITAN’s default setting) at a significant
cost.

Finding 3: Overall, Self-consistency can improve TITAN per-
formance with significant cost. Specifically, with triple the cost,
TITAN + SC@3 is shown to improve TITAN by achieving state-
of-the-art performance on GSM8K and Multiarith.

4.4 RQ4: How each component contribute to
TITAN’s overall performance?

Input and step extraction are two important phases that help TI-
TAN generate precise scripts that can be used to generate correct

Table 6: TITAN Ablation Study

Dataset W/o Input
Extraction

W/o Step
Extraction TITAN

GSM8K 95.6 ↑0.3 93.4 ↓1.9 95.3
GSMHard 77.5 ↓0.7 76.1 ↓2.1 78.2
ASDIV 95.8 ↓1.4 95.3 ↓1.9 97.2
SVAMP 94.5 ↓0.3 92.9 ↓1.9 94.8
AddSub 97.7 -0.0 97.7 -0.0 97.7
Multiarith 98.5 ↓0.2 98.3 ↓0.5 98.7
Penguins 95.3 ↓2.2 94.6 ↓2.9 97.5

Finding 98.5 ↓1.5 98.3 ↓1.3 99.8
Counting 93.6 ↑3.8 88.6 ↓1.2 89.8
True/False 94.5 ↑0.7 95.1 ↑1.3 93.8
Generative 99.0 ↓0.9 99.1 ↓0.8 99.9

Average 94.5 ↓0.3 93.5 ↓1.4 94.8

original_salary = 20000
raise_amount = 0.05
new_monthly_salary = original_salary * (1 + raise_amount)
bonus = 0.5 * original_salary
total_annual_salary_without_bonus = new_monthly_salary * 12
total_annual_salary = total_annual_salary_without_bonus + bonus

original_monthly_salary = 20000
raise_percentage = 0.05
months_in_year = 12
raise_amount = original_monthly_salary * raise_percentage
new_monthly_salary = original_monthly_salary + raise_amount
bonus = new_monthly_salary / 2
total_annual_salary_without_bonus = new_monthly_salary * months_in_year
total_annual_salary_with_bonus = total_annual_salary_without_bonus + bonus

Tim gets a promotion that offers him a 5% raise on his
$20000 a month salary. It also gives him a bonus worth half a
month's salary. How much money will he make in a year?

Prompt

monthly_salary = 20000
annual_salary = monthly_salary * 12
raise_amount = monthly_salary * 0.05
bonus = monthly_salary / 2
total_annual_income = annual_salary + raise_amount + bonus

262500

262500

Answer

W/o Step Extraction

TITAN

W/o Input Extraction

262000

251000

Incorrect

Correct

Incorrect

Figure 4: An example where both reasoning phases together
help TITAN generate the correct response.

responses. In this RQ, we perform an ablation study with GPT-4
to see how each component contributes to TITAN’s overall perfor-
mance.

Table 6 shows how turning off one of the main reasoning com-
ponents (Column W/o Input Extraction and W/o Step Extraction)
can reduce the effectiveness of TITAN. The ↓ and ↑ indicate that
removing the component reduces or increases the effectiveness
of TITAN respectively. For example, removing the step extraction
phase reduces TITAN accuracy on the Penguins dataset by 2.9%. On
all datasets, removing the step extraction phase reduces TITAN’s
performance significantly with an average reduction in perfor-
mance of 1.5%. The result suggests that step extraction significantly
contributes to TITAN’s performance.

On the other hand, removing the input extraction phase hinders
TITAN’s performance in a few cases. For example, on the Counting
dataset, TITAN gains 3.8% without the input extraction phase. This
could be because, for the counting tasks, there are fewer inputs
and including additional information about the input complicates
the script generation prompt and affects the final script. This result
suggests that input extraction might have less contribution to the
overall success of TITAN in correctly crafting the answers. However,

TITAN: Task-oriented Prompt Improvement with Script Generation Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada

in a broader term, input extraction is still a necessary component of
TITAN as removing it reduces TITAN performance by an average
of 0.3%.

On AddSub, removing either component does not trigger signifi-
cant accuracy changes (i.e., changes larger than 0.1%). This suggests
that each reasoning phase already provides enough information
to enhance the code generation. This is evident in Table 4, where
TITAN outperforms PAL (without such reasonings) by 0.5% on the
AddSub dataset. Overall, both components are essential to the over-
all performance of TITAN as removing either reduces the overall
performance of TITAN.

This is further illustrated by the example in Figure 4, where
without either input and step extraction, TITAN failed to utilize
the correct input or follow the precise procedure. Specifically, with-
out input extraction, the framework fails to distinguish between
the original_salary and the new_monthly_salary, leading to
incorrect bonus calculations. On the other hand, without step ex-
traction, the model fails to recognize the correct steps to compute
the raise_amount (i.e., should be across 12 months) and bonus
(should be on raised salary). When utilizing both reasoning phases,
TITAN was able to correctly extract precise inputs and procedural
steps to complete the task in a clear and precise manner.

Finding 4: Step extraction phase plays a significant role in
enhancing TITAN’s performance while in some cases input
extraction can hinder the performance of the framework. How-
ever, both components are essential to the overall performance
of TITAN as removing either reduces the overall performance
of TITAN.

5 Related Work
Prompt engineering with code generation: There has been prior
work that utilizes code generation to address the gap in LLMs’ ex-
ecution ability when it comes to task-oriented prompts. PAL[13]
introduces an innovative method for tackling mathematical prob-
lems through script generation combined with few-shot prompt-
ing. Further improvement is made by a Model Selection technique
(MS) [55] which employs both PAL and CoT (Chain-of-Thought) in
tandem by selecting the best response between them.

X-of-Thoughts (XoT) [29] represents another code generation
strategy, focusing on resolving mathematical and algebraic equa-
tions by dynamically switching among different prompting meth-
ods. Another distinct method, CSV [59], approaches the resolution
of mathematical challenges through coding, which heavily relies
on the GPT-4 Code Interpreter. Its efficacy is evaluated exclusively
on the MATH dataset [17], indicating a specialized focus on coding
solutions for mathematical issues.

In contrast, TITAN diverges significantly from these methods
by adopting a zero-shot learning technique, which enhances its
capacity for generalization across diverse problem sets. TITAN aims
to solve reasoning questions without relying on any hand-crafted
data, few-shot learning techniques, or human annotators.
Traditional prompt engineering without code generation: The
exploration of concepts such as Chain-of-Thought [45] and Step-
Back [57] has revealed the capacity of LLMs for zero-shot learn-
ing [22] primarily through their ability to process information in a

step-by-stepmanner. Priorwork such as PHP [56], Self-Contrast [53],
and Boosting-of-Thought (BoT) [6] has been developed to uncover
the reasoning paths through post-hoc strategies of prompt engi-
neering, aiming to enhance the models’ problem-solving capabil-
ities by mimicking human-like [16] reasoning processes. These
techniques use self-verification methods. For example, BoT itera-
tively generates, assesses, and refines thoughts using the model’s
self-evaluation. Self-Contrast exploits diverse solutions to enrich
reasoning, while PHP refines reasoning paths with LLM outputs
toward the correct answer.

Because the mechanisms and effectiveness of self-correction in
LLMs are not well-understood [18], we do not include such iter-
ative mechanism in TITAN. Recent research indicates that LLMs
are not yet capable of self-correction [18]. Distinct from such inter-
active methods which require human annotations or many more
query rounds, TITAN does not require manual effort to incorporate
evaluation information into the reasoning process.
Code generation with LLMs: Recently, research in using LLMs
for code generation [5, 12, 36, 49] has made significant advance-
ments. These advancements often come from training these models
with more specific examples of code, which makes them better at
specific coding tasks [5]. Another line of research is guided code
generation [54, 58] where LLMs are utilized to efficiently create
code. Specifically, Willard et al. [46] introduce a system that guides
LLMs to produce text using rules and structures from programming
languages, reducing unnecessary steps in creating code sequences.
Another recent work, SynCode [41], is a framework that improves
how LLMs understand and generate code by focusing on the rules of
programming languages. This approach helps create more accurate
code by filtering out mistakes and focusing on the correct coding
syntax. TITAN differs from these code generation research in the
general nature of TITAN’s input (i.e., prompt) where TITAN is de-
signed to improve the overall question/answer capability of LLMs
by utilizing script generation and not to solve general software
engineering problems related to code generation.

6 Conclusion
In this work, we introduced TITAN, a novel approach for natural
language reasoning that leverages script generation through the
extraction of inputs and steps by utilizing Step-Back and Chain-of-
Thought prompting respectively. We evaluate TITAN on 11 datasets
with a comprehensive comparison with prior state-of-the-art. Un-
like preceding approaches that predominantly rely on few-shot
prompting techniques, TITAN employs a zero-shot prompting strat-
egy, thereby eliminating the requirement for hand-crafted data. Our
findings demonstrate that TITAN exhibits superior performance in
a diverse set of tasks. Furthermore, the integration of TITAN with
self-consistency further enhances its efficacy (with some additional
cost), thereby underscoring the potential of TITAN as a robust
solution for advanced natural language reasoning challenges.

7 Data Availability
We release our code and data through the following link: https://
github.com/Smart-System-testing-lab/TITAN-Task-oriented-Prompt-
Improvement-with-Script-Generation.

https://github.com/Smart-System-testing-lab/TITAN-Task-oriented-Prompt-Improvement-with-Script-Generation
https://github.com/Smart-System-testing-lab/TITAN-Task-oriented-Prompt-Improvement-with-Script-Generation
https://github.com/Smart-System-testing-lab/TITAN-Task-oriented-Prompt-Improvement-with-Script-Generation

Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada Chung-Yu Wang, Alireza DaghighFarsoodeh, and Hung Viet Pham

References
[1] Yelaman Abdullin, Diego Molla-Aliod, Bahadorreza Ofoghi, John Yearwood, and

Qingyang Li. 2024. Synthetic Dialogue Dataset Generation using LLM Agents.
arXiv preprint arXiv:2401.17461 (2024).

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. 2024.
Large language models for mathematical reasoning: Progresses and challenges.
arXiv preprint arXiv:2402.00157 (2024).

[4] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2023. A survey on
evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology (2023).

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[6] Sijia Chen, Baochun Li, and Di Niu. 2024. Boosting of Thoughts: Trial-and-Error
Problem Solving with Large Language Models. arXiv:2402.11140 [cs.CL]

[7] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2023. Pro-
gram of Thoughts Prompting: Disentangling Computation from Reasoning for
Numerical Reasoning Tasks. arXiv:2211.12588 [cs.CL]

[8] Cheng-Han Chiang and Hung-yi Lee. 2024. Over-reasoning and redundant
calculation of large language models. arXiv preprint arXiv:2401.11467 (2024).

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math
Word Problems. arXiv:2110.14168 [cs.LG]

[10] Hai Dang, Lukas Mecke, Florian Lehmann, Sven Goller, and Daniel Buschek. 2022.
How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learn-
ing for Human-AI Interaction in Creative Applications of Generative Models.
arXiv:2209.01390 [cs.HC]

[11] Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Stefan De Gendt, and Wannes
Meert. 2022. Code generation using machine learning: A systematic review. Ieee
Access 10 (2022), 82434–82455.

[12] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda
Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. In-
coder: A generative model for code infilling and synthesis. arXiv preprint
arXiv:2204.05999 (2022).

[13] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. PAL: Program-aided Language Models.
arXiv:2211.10435 [cs.CL]

[14] Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li,
Yongfeng Zhang, et al. 2024. Openagi: When llmmeets domain experts. Advances
in Neural Information Processing Systems 36 (2024).

[15] Ben Goertzel. 2023. Generative AI vs. AGI: The Cognitive Strengths and Weak-
nesses of Modern LLMs. arXiv preprint arXiv:2309.10371 (2023).

[16] Zhiwei He, Tian Liang, Wenxiang Jiao, Zhuosheng Zhang, Yujiu Yang, Rui Wang,
Zhaopeng Tu, Shuming Shi, and Xing Wang. 2024. Exploring human-like trans-
lation strategy with large language models. Transactions of the Association for
Computational Linguistics 12 (2024), 229–246.

[17] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring Mathematical Problem
Solving With the MATH Dataset. arXiv:2103.03874 [cs.LG]

[18] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, AdamsWei Yu,
Xinying Song, and Denny Zhou. 2023. Large language models cannot self-correct
reasoning yet. arXiv preprint arXiv:2310.01798 (2023).

[19] Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and Jinghua Tan. 2024. A Com-
prehensive Survey on Process-Oriented Automatic Text Summarization with
Exploration of LLM-Based Methods. arXiv preprint arXiv:2403.02901 (2024).

[20] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2022. Decomposed prompting: Amodular approach
for solving complex tasks. arXiv preprint arXiv:2210.02406 (2022).

[21] Jaehyung Kim, Jaehyun Nam, SangwooMo, Jongjin Park, Sang-Woo Lee, Minjoon
Seo, Jung-Woo Ha, and Jinwoo Shin. 2023. SuRe: Improving Open-domain Ques-
tion Answering of LLMs via Summarized Retrieval. In The Twelfth International
Conference on Learning Representations.

[22] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[23] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh
Hajishirzi. 2016. MAWPS: A math word problem repository. In Proceedings
of the 2016 conference of the north american chapter of the association for
computational linguistics: human language technologies. 1152–1157.

[24] Yuan Li, Yixuan Zhang, and Lichao Sun. 2023. Metaagents: Simulating interactions
of human behaviors for llm-based task-oriented coordination via collaborative
generative agents. arXiv preprint arXiv:2310.06500 (2023).

[25] Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning Liu,
and Jianyong Wang. 2024. FlexKBQA: A Flexible LLM-Powered Framework for
Few-Shot Knowledge Base Question Answering. arXiv:2308.12060 [cs.CL]

[26] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang,
and Meng Yan. 2023. Improving chatgpt prompt for code generation. arXiv
preprint arXiv:2305.08360 (2023).

[27] Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras,
Yejin Choi, and Hannaneh Hajishirzi. 2022. Generated Knowledge Prompting for
Commonsense Reasoning. arXiv:2110.08387 [cs.CL]

[28] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2021. What Makes Good In-Context Examples for GPT-3? arXiv
preprint arXiv:2101.06804 (2021).

[29] Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun Hu, Yue Zhang, Xipeng Qiu,
and Zheng Zhang. 2023. Plan, Verify and Switch: Integrated Reasoning with
Diverse X-of-Thoughts. arXiv:2310.14628 [cs.CL]

[30] Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. 2023.
Bounding the capabilities of large language models in open text generation with
prompt constraints. arXiv preprint arXiv:2302.09185 (2023).

[31] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2021.
Fantastically ordered prompts and where to find them: Overcoming few-shot
prompt order sensitivity. arXiv preprint arXiv:2104.08786 (2021).

[32] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems 36 (2024).

[33] Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. 2021. A diverse corpus for
evaluating and developing English math word problem solvers. arXiv preprint
arXiv:2106.15772 (2021).

[34] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 2021. Are NLP Models really
able to Solve Simple Math Word Problems? arXiv:2103.07191 [cs.CL]

[35] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. True few-shot learning
with language models. Advances in neural information processing systems 34
(2021), 11054–11070.

[36] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[37] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 2021. Learning to retrieve
prompts for in-context learning. arXiv preprint arXiv:2112.08633 (2021).

[38] Jiho Shin and Jaechang Nam. 2021. A survey of automatic code generation
from natural language. Journal of Information Processing Systems 17, 3 (2021),
537–555.

[39] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay,
Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. 2022. Challenging big-bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261 (2022).

[40] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of
the 28th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering. 1433–1443.

[41] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep
Singh. 2024. Improving LLM Code Generation with Grammar Augmentation.
arXiv preprint arXiv:2403.01632 (2024).

[42] Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang, Dian Yu, Shuming Shi,
and Zhaopeng Tu. 2023. Document-level machine translation with large language
models. arXiv preprint arXiv:2304.02210 (2023).

[43] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]

[44] Zezhong Wang, Fangkai Yang, Pu Zhao, Lu Wang, Jue Zhang, Mohit Garg, Qing-
wei Lin, and Dongmei Zhang. 2023. Empower large language model to per-
form better on industrial domain-specific question answering. arXiv preprint
arXiv:2305.11541 (2023).

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[46] Brandon T Willard and Rémi Louf. 2023. Efficient Guided Generation for Large
Language Models. arXiv e-prints (2023), arXiv–2307.

[47] Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Derek F Wong, and Lidia S
Chao. 2023. A survey on llm-gernerated text detection: Necessity, methods, and
future directions. arXiv preprint arXiv:2310.14724 (2023).

[48] Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou,
Xia Hu, and Anshumali Shrivastava. 2023. Compress, then prompt: Improving
accuracy-efficiency trade-off of llm inference with transferable prompt. arXiv
preprint arXiv:2305.11186 (2023).

https://arxiv.org/abs/2402.11140
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2209.01390
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2308.12060
https://arxiv.org/abs/2110.08387
https://arxiv.org/abs/2310.14628
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2203.11171

TITAN: Task-oriented Prompt Improvement with Script Generation Agentic & GenAI Evaluation KDD’25, August, 2025, Toronto, Canada

[49] Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li, Ge Li, and Rongcong Lv.
2023. Deep learning based code generation methods: A literature review. arXiv
preprint arXiv:2303.01056 (2023).

[50] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
large language models. Advances in Neural Information Processing Systems 36
(2024).

[51] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evaluating
the code quality of ai-assisted code generation tools: An empirical study on github
copilot, amazon codewhisperer, and chatgpt. arXiv preprint arXiv:2304.10778
(2023).

[52] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang,
James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. 2023. MetaMath:
Bootstrap Your Own Mathematical Questions for Large Language Models. arXiv
preprint arXiv:2309.12284 (2023).

[53] Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yuet-
ing Zhuang, and Weiming Lu. 2024. Self-contrast: Better reflection through
inconsistent solving perspectives. arXiv preprint arXiv:2401.02009 (2024).

[54] Junchen Zhao, Yurun Song, Junlin Wang, and Ian G Harris. 2022. GAP-Gen:
Guided Automatic Python Code Generation. arXiv preprint arXiv:2201.08810
(2022).

[55] Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Qizhe Xie. 2023. Automatic
Model Selection with Large Language Models for Reasoning. arXiv preprint
arXiv:2305.14333 (2023).

[56] Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. 2023.
Progressive-hint prompting improves reasoning in large language models. arXiv
preprint arXiv:2304.09797 (2023).

[57] Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H
Chi, Quoc V Le, and Denny Zhou. 2023. Take a step back: evoking reasoning via
abstraction in large language models. arXiv preprint arXiv:2310.06117 (2023).

[58] Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, KevinWang, Yihan Xi, Dejia Xu,
and Zhangyang Wang. 2023. Outline, then details: Syntactically guided coarse-to-
fine code generation. In International Conference on Machine Learning. PMLR,
42403–42419.

[59] Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing
Lu, Anya Jia, Linqi Song, Mingjie Zhan, and Hongsheng Li. 2023. Solving Chal-
lenging Math Word Problems Using GPT-4 Code Interpreter with Code-based
Self-Verification. arXiv:2308.07921 [cs.CL]

[60] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. 2023.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.
arXiv:2205.10625 [cs.AI]

https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2205.10625

	Abstract
	1 Introduction
	2 Approach
	2.1 Challenges
	2.2 Script generation with step-back and zero-shot chain-of-thought prompting

	3 Experimental Setup
	3.1 Task-oriented datasets
	3.2 Mathematical and symbolic reasoning datasets
	3.3 Baselines
	3.4 Experiment Details

	4 Result and Discussion
	4.1 RQ1: How does TITAN compare to the state-of-the-art zero-shot prompting approaches with code generation?
	4.2 RQ2: How does TITAN compare to the state-of-the-art few-shot prompting approaches with code generation?
	4.3 RQ3: Can self-consistency help improve TITAN?
	4.4 RQ4: How each component contribute to TITAN's overall performance?

	5 Related Work
	6 Conclusion
	7 Data Availability
	References

